If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20c^2-47c+24=0
a = 20; b = -47; c = +24;
Δ = b2-4ac
Δ = -472-4·20·24
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-17}{2*20}=\frac{30}{40} =3/4 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+17}{2*20}=\frac{64}{40} =1+3/5 $
| 4(15)-7+7y-1+86=180 | | -16=c–11 | | 5y-6=18y+7 | | 4(w+1)=244 | | p=5+8 | | 5z–10=-25 | | 5y-20=3y+42 | | 1x1=-4 | | 5(x-3)+2=-2(2x-1) | | 8y+14-1y=7(y+2)D | | 3x+3+47=180 | | K(4)=3n | | T(-3)=19-x | | 11+4b=11 | | 4(-3+4x)=10 | | 4^x-5=64^1-x | | 9y-7=4(y-3) | | 4x+32=2x+8 | | 5(4x+8)=32 | | 3+u=-3 | | 8^2+3r+2=7r^2 | | 12x+7=x−3 | | 2(3h+14)=1+6h–20 | | 8t=t^2-20 | | X=15.00-0.10x | | -13+2x=7 | | -8x-8+3(x-2)=-3x2 | | 2*x=57 | | w–11=1 | | 12x+6-8x=2x+3-9 | | 11/12k=1/4 | | 2x^2+3x+1=x+3 |